Skip to the content.

Teradata-Gimel-API-Benchmarking


Small Dataset- Yelp dataset

Gimel Teradata Write API is tested for Yelp Tip Dataset. The API is tested with varying number of records written into Teradata from 10000 to 5M. The average performnace is measured by taking average of 3 iterations.(Itr=Iteration)

Following parameters are varied while benchmarking:

Batchsize=10000 | Executor Cores=1 | Executors=5

10000-1-5

Batchsize=10000 | Executor Cores=1 | Executors=10

10000-1-5

Batchsize=10000 | Executor Cores=1 | Executors=15

10000-1-5

Batchsize=10000 | Executor Cores=4 | Executors=10

10000-1-5

FASTLOAD | Executor Cores=1 | Executors=1

10000-1-5

Average case performance for all of the above settings (Records vs Time-in-seconds)

(NOTE: BATCHSIZE | NUM_CORES | EXECUTORS)

Records 10000-1-5 10000-1-10 10000-1-15 10000-4-10 FASTLOAD-4-10
10000 4.22 6.37 4.10 5.27 17.39
20000 2.96 3.19 2.99 3.05 14.64
30000 3.16 3.38 4.14 2.92 15.12
40000 3.92 4.47 4.00 5.18 14.80
50000 4.58 4.39 4.62 4.50 14.79
60000 5.29 4.88 5.28 4.73 14.99
70000 6.28 6.80 6.10 5.32 14.91
80000 6.55 7.16 7.30 7.19 15.50
90000 7.38 7.76 7.45 7.42 15.13
100000 9.23 7.93 8.80 7.03 15.40
200000 15.57 13.88 15.84 14.00 16.58
300000 23.43 21.85 23.25 17.70 18.23
400000 30.25 28.20 28.83 17.92 18.97
500000 22.73 36.20 35.87 18.59 19.95
600000 24.45 41.97 41.78 18.92 21.10
700000 25.05 50.67 44.62 19.69 22.09
800000 24.67 54.64 41.59 25.33 23.08
900000 30.15 54.75 38.25 27.42 24.09
1000000 29.94 29.45 41.73 29.67 25.71
2000000 43.18 27.39 29.54 58.39 35.48
3000000 67.65 35.90 29.92 83.46 43.73
4000000 85.72 46.26 37.14 114.20 57.68
5000000 102.13 52.30 43.45 131.12 63.70

10000-1-5

Inference

From the plots, there are two sharp points for Batch writes to Teradata i.e. Records size=10000 & Records size=1M. After 1M, as the increasing number of executors makes write into Teradata faster.

Write into Teradata with FASTLOAD has sharp point at 1M, till then time required for write remains almost steady.

It is clearly observed that as we increase the parallelism i.e. increase in the number of executors to write into Teradata in batch mode, performace gets better for more records.


Big Dataset

We tested Gimel Teradata Read/Write API on big dataset/table. Below are some details about data and benchmarking.

About table

This table stores payment metrics and attributes. It has one record per payment transaction. It has 212 columns with various data types. The table has primary key with bigint type.

Size of data

Records in Millions Size of Data in Gb
1M 0.987g
5M 4.6g
10M 9.2g
25M 21.5g
45M 44.4g
75M 74.56g

Teradata READ API Benchmarking - Batch vs FASTEXPORT

Executor Cores=1 | Executors=16 | FetchSize = 25000 | FASTEXPORT SESSIONS=16

Batch vs FASTEXPORT

Teradata WRITE API Benchmarking - Batch vs FASTLOAD

Executor Cores=1 | Executors=12 | BatchSize = 25000 | FASTLOAD SESSIONS=12

Batch vs FASTLOAD