gators.binning.BinRareCategories¶
-
class
gators.binning.
BinRareCategories
(min_ratio: float)[source]¶ Replace low occurence categories by the value “OTHERS”.
Use BinRareCategories to reduce the cardinality of high cardinal columns. This transformer is also useful to replace unseen categories by a value which is already taken it account by the encoders.
- Parameters
- min_ratiofloat
Min occurence ratio per category.
Examples
Imports and initialization:
>>> from gators.binning import BinRareCategories >>> obj = BinRareCategories(min_ratio=0.5)
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({'A': ['a', 'a', 'b'], 'B': ['a', 'b', 'c']}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({'A': ['a', 'a', 'b'], 'B': ['a', 'b', 'c']})
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({'A': ['a', 'a', 'b'], 'B': ['a', 'b', 'c']})
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X) A B 0 a OTHERS 1 a OTHERS 2 OTHERS OTHERS
Independly of the dataframe library used to fit the transformer, the tranform_numpy method only accepts NumPy arrays and returns a transformed NumPy array. Note that this transformer should only be used when the number of rows is small e.g. in real-time environment.
>>> obj.transform_numpy(X.to_numpy()) array([['a', 'OTHERS'], ['a', 'OTHERS'], ['OTHERS', 'OTHERS']], dtype=object)
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.binning.bin_rare_categories.BinRareCategories[source]¶ Fit the transformer on the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Target values.
- Returns
- BinRareCategories
Instance of itself.
-
transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame][source]¶ Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- Returns
- XDataFrame
Transformed dataframe.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray[source]¶ Transform the array X.
- Parameters
- Xnp.ndarray
Array.
- Returns
- Xnp.ndarray
Transformed array.
-
static
compute_categories_to_keep_dict
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], min_ratio: float) → Dict[str, List[str]][source]¶ Compute the category frequency.
- Parameters
- XDataFrame.
Input dataframe.
- min_ratiofloat
Min occurence per category.
- Returns
- mappingDict[str, List[str]]
Categories to keep.
-
static
get_categories_to_keep_np
(categories_to_keep_dict: Dict[str, numpy.ndarray]) → numpy.ndarray[source]¶ Get the categories to keep.
- Parameters
- categories_to_keep_dictDict[str, np.ndarray])
Categories to keep.
- Returns
- categories_to_keep_npnp.ndarray
Categories to keep.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.