gators.data_cleaning.Replace¶
- 
class 
gators.data_cleaning.Replace(to_replace_dict: Dict[str, Dict[str, str]])[source]¶ Replace the categorical values by the ones given by the user.
The transformer only accepts categorical columns.
- Parameters
 - to_replace_dictDict[str, Dict[str, str]]
 The dictionary keys are the columns and the dictionary values are the to_replace dictionary.
Examples
Imports and initialization:
>>> from gators.data_cleaning import Replace >>> to_replace_dict = {'A': {'a': 'X', 'b': 'Z'}, 'B': {'d': 'Y'}} >>> obj = Replace(to_replace_dict=to_replace_dict)
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame( ... {'A': ['a', 'b', 'c'], 'B': ['d', 'e', 'f'],'C': [1, 2, 3]}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame( ... {'A': ['a', 'b', 'c'], 'B': ['d', 'e', 'f'],'C': [1, 2, 3]})
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame( ... {'A': ['a', 'b', 'c'], 'B': ['d', 'e', 'f'],'C': [1, 2, 3]})
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X) A B C 0 X Y 1 1 Z e 2 2 c f 3
>>> X = pd.DataFrame( ... {'A': ['a', 'b', 'c'], 'B': ['d', 'e', 'f'],'C': [1, 2, 3]}) >>> _ = obj.fit(X) >>> obj.transform_numpy(X.to_numpy()) array([['X', 'Y', 1], ['Z', 'e', 2], ['c', 'f', 3]], dtype=object)
- 
fit(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.data_cleaning.replace.Replace[source]¶ Fit the transformer on the dataframe X.
- Get the list of column names to remove and the array of
 indices to be kept.
- Parameters
 - XDataFrame
 Input dataframe.
- ySeries, default None.
 Target values.
- Returns
 - selfReplace
 Instance of itself.
- 
transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame][source]¶ Transform the dataframe X.
- Parameters
 - XDataFrame.
 Input dataframe.
- Returns
 - XDataFrame
 Transformed dataframe.
- 
transform_numpy(X: numpy.ndarray) → numpy.ndarray[source]¶ Transform the array X.
- Parameters
 - Xnp.ndarray
 Input array.
- Returns
 - Xnp.ndarray
 Transformed array.
- 
static 
check_array(X: numpy.ndarray)¶ Validate array.
- Parameters
 - Xnp.ndarray
 Array.
- 
check_array_is_numerics(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
 - Xnp.ndarray
 Array.
- 
static 
check_binary_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
 - ySeries
 Target values.
- 
static 
check_dataframe(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_contains_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_is_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_dataframe_with_objects(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_datatype(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_multiclass_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
check_nans(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
 - XDataFrame
 Dataframe.
- theta_vecList[float]
 List of columns.
- 
static 
check_regression_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
static 
check_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
 - XDataFrame
 Dataframe.
- ySeries
 Target values.
- 
fit_transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
 - XDataFrame.
 Input dataframe.
- ySeries, default None.
 Input target.
- Returns
 - XDataFrame
 Transformed dataframe.
- 
static 
get_column_names(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
 - inplacebool
 If True return columns. If False return columns__suffix.
- columnsList[str]
 List of columns.
- suffixstr
 Suffix used if inplace is False.
- Returns
 - List[str]
 List of column names.
- 
get_params(deep=True)¶ Get parameters for this estimator.
- Parameters
 - deepbool, default=True
 If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
 - paramsdict
 Parameter names mapped to their values.
- 
set_params(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
 - **paramsdict
 Estimator parameters.
- Returns
 - selfestimator instance
 Estimator instance.