gators.feature_generation_dt.DeltaTime

class gators.feature_generation_dt.DeltaTime(columns_a: List[str], columns_b: List[str])[source]

Create new columns based on the time difference in sec. between two columns.

Parameters
theta_vecList[float]

List of columns.

Examples

Imports and initialization:

>>> from gators.feature_generation_dt import DeltaTime
>>> obj = DeltaTime(columns_a=['C'], columns_b=['A'])

The fit, transform, and fit_transform methods accept:

  • dask dataframes:

>>> import dask.dataframe as dd
>>> import pandas as pd
>>> X = dd.from_pandas(
... pd.DataFrame({
... 'A': ['2020-01-01T23', '2020-01-02T00',  None],
... 'B': [0, 1, 0],
... 'C': ['2020-01-15T23', '2020-01-03T05',  None]}), npartitions=1)
>>> X[['A', 'C']] = X[['A', 'C']].astype('datetime64[ns]')
  • koalas dataframes:

>>> import databricks.koalas as ks
>>> X = ks.DataFrame({
... 'A': ['2020-01-01T23', '2020-01-02T00',  None],
... 'B': [0, 1, 0],
... 'C': ['2020-01-15T23', '2020-01-03T05',  None]})
>>> X[['A', 'C']] = X[['A', 'C']].astype('datetime64[ns]')
  • and pandas dataframes:

>>> import pandas as pd
>>> X = pd.DataFrame({
... 'A': ['2020-01-01T23', '2020-01-02T00',  None],
... 'B': [0, 1, 0],
... 'C': ['2020-01-15T23', '2020-01-03T05',  None]})
>>> X[['A', 'C']] = X[['A', 'C']].astype('datetime64[ns]')

The result is a transformed dataframe belonging to the same dataframe library.

>>> obj.fit_transform(X)
                    A  B                   C  C__A__Deltatime[s]
0 2020-01-01 23:00:00  0 2020-01-15 23:00:00           1209600.0
1 2020-01-02 00:00:00  1 2020-01-03 05:00:00            104400.0
2                 NaT  0                 NaT                 NaN
>>> X = pd.DataFrame({
... 'A': ['2020-01-01T23', '2020-01-02T00',  None],
... 'B': [0, 1, 0],
... 'C': ['2020-01-15T23', '2020-01-03T05',  None]})
>>> X[['A', 'C']] = X[['A', 'C']].astype('datetime64[ns]')
>>> _ = obj.fit(X)
>>> obj.transform_numpy(X.to_numpy())
array([[Timestamp('2020-01-01 23:00:00'), 0,
        Timestamp('2020-01-15 23:00:00'), 1209600.0],
       [Timestamp('2020-01-02 00:00:00'), 1,
        Timestamp('2020-01-03 05:00:00'), 104400.0],
       [NaT, 0, NaT, nan]], dtype=object)
fit(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.feature_generation_dt.delta_time.DeltaTime[source]

Fit the transformer on the dataframe X.

Parameters
Xpd.DataFrame

Input dataframe.

ySeries, default None.

Target values.

Returns
selfDeltaTime

Instance of itself.

transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame][source]

Transform the dataframe X.

Parameters
XDataFrame.

Input dataframe.

Returns
XDataFrame

Transformed dataframe.

transform_numpy(X: numpy.ndarray) → numpy.ndarray[source]

Transform the array X.

Parameters
Xnp.ndarray

Input array.

Returns
Xnp.ndarray:

Transformed array.

static check_array(X: numpy.ndarray)

Validate array.

Parameters
Xnp.ndarray

Array.

check_array_is_numerics(X: numpy.ndarray)

Check if array is only numerics.

Parameters
Xnp.ndarray

Array.

static check_binary_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])

Raise an error if the target is not binary.

Parameters
ySeries

Target values.

static check_dataframe(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Validate dataframe.

Parameters
XDataFrame

Dataframe.

static check_dataframe_contains_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Check if dataframe is only numerics.

Parameters
XDataFrame

Dataframe.

static check_dataframe_is_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Check if dataframe is only numerics.

Parameters
XDataFrame

Dataframe.

check_dataframe_with_objects(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Check if dataframe contains object columns.

Parameters
XDataFrame

Dataframe.

check_datatype(dtype, accepted_dtypes)

Check if dataframe is only numerics.

Parameters
XDataFrame

Dataframe.

static check_multiclass_target(y: Union[pd.Series, ks.Series, dd.Series])

Raise an error if the target is not discrete.

Parameters
ySeries

Target values.

check_nans(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])

Raise an error if X contains NaN values.

Parameters
XDataFrame

Dataframe.

theta_vecList[float]

List of columns.

static check_regression_target(y: Union[pd.Series, ks.Series, dd.Series])

Raise an error if the target is not discrete.

Parameters
ySeries

Target values.

static check_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])

Validate target.

Parameters
XDataFrame

Dataframe.

ySeries

Target values.

fit_transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]

Fit and Transform the dataframe X.

Parameters
XDataFrame.

Input dataframe.

ySeries, default None.

Input target.

Returns
XDataFrame

Transformed dataframe.

static get_column_names(inplace: bool, columns: List[str], suffix: str)

Return the names of the modified columns.

Parameters
inplacebool

If True return columns. If False return columns__suffix.

columnsList[str]

List of columns.

suffixstr

Suffix used if inplace is False.

Returns
List[str]

List of column names.

get_params(deep=True)

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.