gators.feature_generation_str.SplitExtract¶
-
class
gators.feature_generation_str.
SplitExtract
(columns: List[str], str_split_vec: List[int], idx_split_vec: List[int], column_names: List[str] = None)[source]¶ Create new columns based on split strings.
The transformer applies two steps:
split each string element using the given value.
extract the string of the given split list element.
- Parameters
- theta_vecList[float]
List of columns.
- str_split_vecList[int]
List of separators.
- idx_split_vecList[int]
List of split indices.
- column_namesList[int]
List of new column names.
Examples
Imports and initialization:
>>> from gators.feature_generation_str import SplitExtract >>> obj = SplitExtract( ... columns=['A', 'A'], str_split_vec=['*', '*'], idx_split_vec=[0, 1])
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas( ... pd.DataFrame({'A': ['qw*e', 'a*qd', 'zxq*'], 'B': [1, 2, 3]}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({'A': ['qw*e', 'a*qd', 'zxq*'], 'B': [1, 2, 3]})
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({'A': ['qw*e', 'a*qd', 'zxq*'], 'B': [1, 2, 3]})
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X) A B A__split_by_*_idx_0 A__split_by_*_idx_1 0 qw*e 1 qw e 1 a*qd 2 a qd 2 zxq* 3 zxq >>> X = pd.DataFrame({'A': ['qw*e', 'a*qd', 'zxq*'], 'B': [1, 2, 3]}) >>> _ = obj.fit(X) >>> obj.transform_numpy(X.to_numpy()) array([['qw*e', 1, 'qw', 'e'], ['a*qd', 2, 'a', 'qd'], ['zxq*', 3, 'zxq', '']], dtype=object)
-
transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame][source]¶ Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- Returns
- XDataFrame
Transformed dataframe.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray[source]¶ Transform the array X.
- Parameters
- Xnp.ndarray
Input array.
- Returns
- Xnp.ndarray
Transformed array.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.transformers.transformer.Transformer¶ Fit the transformer on the dataframe X.
- Parameters
- Xpd.DataFrame
Input dataframe.
- ySeries, default None.
Target values.
- Returns
- Transformer
Instance of itself.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.