gators.encoders.TargetEncoder¶
- 
class 
gators.encoders.TargetEncoder(inplace=True)[source]¶ Encode the categorical variables using the target encoding technique.
- Parameters
 - inplacebool, default to True.
 If True, replace in-place the categorical values by numerical ones. If False, keep the categorical columns and create new encoded columns.
Examples
Imports and initialization:
>>> from gators.encoders import TargetEncoder >>> obj = TargetEncoder()
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({'A': ['a', 'a', 'b'], 'B': ['c', 'd', 'd']}), npartitions=1) >>> y = dd.from_pandas(pd.Series([1, 1, 0], name='TARGET'), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({'A': ['a', 'a', 'b'], 'B': ['c', 'd', 'd']}) >>> y = ks.Series([1, 1, 0], name='TARGET')
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({'A': ['a', 'a', 'b'], 'B': ['c', 'd', 'd']}) >>> y = pd.Series([1, 1, 0], name='TARGET')
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X, y) A B 0 1.0 1.0 1 1.0 0.5 2 0.0 0.5
Independly of the dataframe library used to fit the transformer, the tranform_numpy method only accepts NumPy arrays and returns a transformed NumPy array. Note that this transformer should only be used when the number of rows is small e.g. in real-time environment.
>>> obj.transform_numpy(X.to_numpy()) array([[1. , 1. ], [1. , 0.5], [0. , 0.5]])
- 
fit(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series]) → gators.encoders.target_encoder.TargetEncoder[source]¶ Fit the encoder.
- Parameters
 - XDataFrame
 Input dataframe.
- ySeries, default None.
 Target values.
- Returns
 - TargetEncoder:
 Instance of itself.
- 
generate_mapping(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series]) → Dict[str, Dict[str, float]][source]¶ Generate the mapping to perform the encoding.
- Parameters
 - XDataFrame
 Input dataframe.
- ySeries:
 Target values.
- Returns
 - Dict[str, Dict[str, float]]
 Mapping.
- 
static 
check_array(X: numpy.ndarray)¶ Validate array.
- Parameters
 - Xnp.ndarray
 Array.
- 
check_array_is_numerics(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
 - Xnp.ndarray
 Array.
- 
static 
check_binary_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
 - ySeries
 Target values.
- 
static 
check_dataframe(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_contains_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_is_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_dataframe_with_objects(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_datatype(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_multiclass_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
check_nans(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
 - XDataFrame
 Dataframe.
- theta_vecList[float]
 List of columns.
- 
static 
check_regression_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
static 
check_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
 - XDataFrame
 Dataframe.
- ySeries
 Target values.
- 
static 
decompose_mapping(mapping: Dict[str, Dict[str, float]]) → Tuple[List[str], numpy.ndarray, numpy.ndarray]¶ Decompose the mapping.
- Parameters
 - mappingDict[str, Dict[str, float]]
 The dictionary keys are the categorical columns, the keys are the mapping itself for the assocaited column.
- Returns
 - columnsList[float]
 List of columns.
- values_vecnp.ndarray
 Values to encode.
- encoded_values_vecnp.ndarray
 Values used to encode.
- 
display_mapping(cmap: Union[str, colormap], k=5, decimal=2, title='')¶ Display the encoder mapping in a jupyter notebook. Parameters ———- cmap : Union[str, ‘colormap’]
Matplotlib colormap.
- kint, default 5.
 Number of mappings displayed.
- decimalsint, default 2.
 Number of decimal places to use.
- titlestr, default ‘’.
 Plot title.
- 
fit_transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
 - XDataFrame.
 Input dataframe.
- ySeries, default None.
 Input target.
- Returns
 - XDataFrame
 Transformed dataframe.
- 
static 
get_column_names(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
 - inplacebool
 If True return columns. If False return columns__suffix.
- columnsList[str]
 List of columns.
- suffixstr
 Suffix used if inplace is False.
- Returns
 - List[str]
 List of column names.
- 
get_params(deep=True)¶ Get parameters for this estimator.
- Parameters
 - deepbool, default=True
 If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
 - paramsdict
 Parameter names mapped to their values.
- 
set_params(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
 - **paramsdict
 Estimator parameters.
- Returns
 - selfestimator instance
 Estimator instance.
- 
transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Transform the dataframe X.
- Parameters
 - XDataFrame.
 Input dataframe.
- Returns
 - ——-
 - XDataFrame
 Transformed dataframe.
- 
transform_numpy(X: numpy.ndarray) → numpy.ndarray¶ Transform the array X.
- Parameters
 - Xnp.ndarray
 Input array.
- Returns
 - ——-
 - Xnp.ndarray
 Encoded array.