gators.binning.QuantileBinning¶
-
class
gators.binning.
QuantileBinning
(n_bins: int, inplace=False)[source]¶ Bin the columns using quantile-based splits.
The binning can be done inplace or by adding the binned columns to the existing data.
- Parameters
- n_binsint
Number of bins to use.
- inplacebool, default False
If False, return the dataframe with the new binned columns with the names “column_name__bin”). Otherwise, return the dataframe with the existing binned columns.
See also
gators.binning.Binning
Bin using equal splits.
gators.binning.CustomBinning
Bin using the variable quantiles.
gators.binning.TreeBinning
Bin using tree-based splits.
Examples
>>> from gators.binning import QuantileBinning
The binning can be done inplace by modifying the existing columns
>>> obj = QuantileBinning(n_bins=3, inplace=True)
or by adding new binned columns
>>> obj = QuantileBinning(n_bins=3, inplace=True)
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({'A': [-1, 0, 1], 'B': [3, 2, 1]}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({'A': [-1, 0, 1], 'B': [3, 2, 1]})
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({'A': [-1, 0, 1], 'B': [3, 2, 1]})
The result is a transformed dataframe belonging to the same dataframe library.
with inplace=True
>>> obj = QuantileBinning(n_bins=3, inplace=True) >>> obj.fit_transform(X) A B 0 (-inf, -0.33) [2.33, inf) 1 [-0.33, 0.33) [1.67, 2.33) 2 [0.33, inf) (-inf, 1.67)
with inplace=False
>>> X = pd.DataFrame({'A': [-1, 0, 1], 'B': [3, 2, 1]}) >>> obj = QuantileBinning(n_bins=3, inplace=False) >>> obj.fit_transform(X) A B A__bin B__bin 0 -1 3 (-inf, -0.33) [2.33, inf) 1 0 2 [-0.33, 0.33) [1.67, 2.33) 2 1 1 [0.33, inf) (-inf, 1.67)
Independly of the dataframe library used to fit the transformer, the tranform_numpy method only accepts NumPy arrays and returns a transformed NumPy array. Note that this transformer should only be used when the number of rows is small e.g. in real-time environment.
>>> X = pd.DataFrame({'A': [-1, 0, 1], 'B': [3, 2, 1]}) >>> obj.transform_numpy(X.to_numpy()) array([[-1, 3, '(-inf, -0.33)', '[2.33, inf)'], [0, 2, '[-0.33, 0.33)', '[1.67, 2.33)'], [1, 1, '[0.33, inf)', '(-inf, 1.67)']], dtype=object)
-
compute_bins
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Tuple[List[List[float]], numpy.ndarray][source]¶ Compute the bins list and the bins array. The bin list is used for dataframes and the bins array is used for arrays.
- Parameters
- XDataFrame
Input dataframe.
- n_binsint
Number of bins to use.
- Returns
- binsList[List[float]]
Bin splits definition. The dictionary keys are the column names to bin, its values are the split arrays.
- bins_npnp.ndarray
Bin splits definition for NumPy.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.transformers.transformer.Transformer¶ Fit the transformer on the dataframe X.
- Parameters
- XDataFrame
Input dataframe.
- ySeries, default None.
Target values.
- Returns
- self‘Transformer’
Instance of itself.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
static
get_labels
(pretty_bins_dict: Dict[str, numpy.array])¶ Get the labels of the bins.
- Parameters
- pretty_bins_dictDict[str, np.array])
pretified bins used to generate the labels.
- Returns
- Dict[str, np.array]
Labels.
- np.array
Labels.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
-
transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Transform the dataframe X.
- Parameters
- XDataFrame
Input dataframe.
- Returns
- XDataFrame
Transformed dataframe.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray¶ Transform the array X.
- Parameters
- Xnp.ndarray
Array.
- Returns
- Xnp.ndarray
Transformed array.