gators.scalers.YeoJohnson¶
-
class
gators.scalers.
YeoJohnson
(lambdas_dict: Dict[str, float], inplace: bool = True)[source]¶ Scale the data accoring to the Yeo-Johnson transformation.
It is recommanded to use the StandardScaler transformer before running YeoJohnson.
- Parameters
- lambdas_dictDict[str, List[float]]
The keys are the columns, the values are the list of lambdas:
Examples
Imports and initialization:
>>> from gators.scalers import YeoJohnson >>> lambdas_dict = {'A': 0.8130050344716966, 'B': 1.0431595843133055, 'C': 0.9168245659045446} >>> obj = YeoJohnson(lambdas_dict=lambdas_dict)
The fit, transform, and fit_transform methods accept:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({ ... "A": [3., 1., -3., -1., -3.], ... "B": [22.0, 38.0, -26.0, 35.0, 3 - 5.0], ... "C": [7.25, 71.2833, -7.925, -53.1, -8.05]}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({ ... "A": [3., 1., -3., -1., -3.], ... "B": [22.0, 38.0, -26.0, 35.0, 3 - 5.0], ... "C": [7.25, 71.2833, -7.925, -53.1, -8.05]})
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({ ... "A": [3., 1., -3., -1., -3.], ... "B": [22.0, 38.0, -26.0, 35.0, 3 - 5.0], ... "C": [7.25, 71.2833, -7.925, -53.1, -8.05]})
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X) A B C 0 2.566505 24.284823 6.459180 1 0.930950 42.832241 54.132971 2 -3.524638 -23.431274 -8.961789 3 -1.075641 39.324310 -68.684587 4 -3.524638 -1.945019 -9.111836
Independly of the dataframe library used to fit the transformer, the tranform_numpy method only accepts NumPy arrays and returns a transformed NumPy array. Note that this transformer should only be used when the number of rows is small e.g. in real-time environment.
>>> obj.transform_numpy(X.to_numpy()) array([[ 2.22845745, 26.90617943, 5.7929225 ], [ 0.87009573, 48.50683594, 41.9899559 ], [ -4.21259165, -21.19840813, -10.21141434], [ -1.16205084, 44.38453674, -90.64434052], [ -4.21259165, -1.89256322, -10.39319134]])
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → YeoJonhson[source]¶ Fit the transformer on the pandas/koalas dataframe X.
- Parameters
- XDataFrame
Input dataframe.
- ySeries, default None.
Target values.
- Returns
- self‘YeoJonhson’
Instance of itself.
-
transform
(X)[source]¶ Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- Returns
- XDataFrame
Transformed dataframe.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray[source]¶ Transform the array X.
- Parameters
- Xnp.ndarray:
Input array.
- Returns
- Xnp.ndarray
Transformed array.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.