gators.converter.ToNumpy¶
- 
class 
gators.converter.ToNumpy[source]¶ Convert dataframe and series to NumPy arrays.
Examples
Imports and initialization:
>>> from gators.converter import ToNumpy >>> obj = ToNumpy()
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({ ... 'A': [0.0, 3.0, 6.0], ... 'B': [1.0, 4.0, 7.0], ... 'C': [2.0, 5.0, 8.0]}), npartitions=1) >>> y = dd.from_pandas(pd.Series([0, 0, 1], name='TARGET'), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({ ... 'A': [0.0, 3.0, 6.0], ... 'B': [1.0, 4.0, 7.0], ... 'C': [2.0, 5.0, 8.0]}) >>> y = ks.Series([0, 0, 1], name='TARGET')
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({ ... 'A': [0.0, 3.0, 6.0], ... 'B': [1.0, 4.0, 7.0], ... 'C': [2.0, 5.0, 8.0]}) >>> y = pd.Series([0, 0, 1], name='TARGET')
The result is a 2D NumPy array for X and a 1D NumPy array for y.
>>> X, y = obj.transform(X, y) >>> X array([[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]) >>> y array([0, 0, 1])
- 
transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series]) → Tuple[numpy.ndarray, numpy.ndarray][source]¶ Fit the transformer on the dataframe X.
- Parameters
 - XDataFrame.
 Dataframe.
- y[pd.Series, ks.Series]:
 Target values.
- Returns
 - Xnp.ndarray
 Array.
- ynp.ndarray
 Target values.
- 
static 
check_dataframe(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
 - XDataFrame
 Input dataframe.
- 
static 
check_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
 - XDataFrame
 Dataframe.
- ySeries
 Target values.