gators.feature_generation_dt._BaseDatetimeFeature¶
- 
class 
gators.feature_generation_dt._BaseDatetimeFeature(columns: List[str], date_format: str, column_names: List[str])[source]¶ Base datetime transformer class.
- Parameters
 - theta_vecList[float]
 List of columns.
- column_namesList[str], default None.
 List of column names.
- 
fit(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.transformers.transformer.Transformer[source]¶ Fit the transformer on the dataframe X.
- Parameters
 - XDataFrame
 Input dataframe.
- ySeries, default None.
 Target values.
- Returns
 - selfTransformer
 Instance of itself.
- 
static 
get_cyclic_column_names(columns: List[str], pattern: str)[source]¶ Get the column names.
- Parameters
 - theta_vecList[float]
 List of datetime features.
- pattern: str
 Pattern.
- 
static 
get_idx(date_format: str) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray][source]¶ [summary]
- Parameters
 - date_formatstr
 Datetime format
- Returns
 - idx_day_boundsnp.ndarray
 Start and end indices of the day.
- idx_monthnp.ndarray
 Start and end indices of the month.
- idx_year_boundsnp.ndarray
 Start and end indices of the year.
- 
static 
check_array(X: numpy.ndarray)¶ Validate array.
- Parameters
 - Xnp.ndarray
 Array.
- 
check_array_is_numerics(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
 - Xnp.ndarray
 Array.
- 
static 
check_binary_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
 - ySeries
 Target values.
- 
static 
check_dataframe(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_contains_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_is_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_dataframe_with_objects(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_datatype(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_multiclass_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
check_nans(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
 - XDataFrame
 Dataframe.
- theta_vecList[float]
 List of columns.
- 
static 
check_regression_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
static 
check_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
 - XDataFrame
 Dataframe.
- ySeries
 Target values.
- 
fit_transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
 - XDataFrame.
 Input dataframe.
- ySeries, default None.
 Input target.
- Returns
 - XDataFrame
 Transformed dataframe.
- 
static 
get_column_names(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
 - inplacebool
 If True return columns. If False return columns__suffix.
- columnsList[str]
 List of columns.
- suffixstr
 Suffix used if inplace is False.
- Returns
 - List[str]
 List of column names.
- 
get_params(deep=True)¶ Get parameters for this estimator.
- Parameters
 - deepbool, default=True
 If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
 - paramsdict
 Parameter names mapped to their values.
- 
set_params(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
 - **paramsdict
 Estimator parameters.
- Returns
 - selfestimator instance
 Estimator instance.
- 
abstract 
transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Transform the dataframe X.
- Parameters
 - XDataFrame
 Input dataframe.
- Returns
 - XDataFrame
 Transformed dataframe.
- 
abstract 
transform_numpy(X: Union[pd.Series, ks.Series, dd.Series], y: Union[pd.Series, ks.Series, dd.Series] = None)¶ Transform the array X.
- Parameters
 - Xnp.ndarray
 Array.
- Returns
 - Xnp.ndarray
 Transformed array.