gators.imputers.NumericsImputer¶
-
class
gators.imputers.
NumericsImputer
(strategy: str, value: float = None, columns: List[str] = None, inplace: bool = True)[source]¶ Impute the numerical columns using the strategy passed by the user.
- Parameters
- strategystr
Imputation strategy.
Supported imputation strategies are:
‘constant’
‘mean’
‘median’
- valuestr, default None.
Imputation value used for strategy=constant.
- inplaceList[float], default None.
If True, impute in-place. If False, create new imputed columns.
See also
gators.imputers.ObjectImputer
Impute categorical columns.
Examples
>>> from gators.imputers import NumericsImputer
>>> bins = {'A':[-np.inf, 0, np.inf], 'B':[-np.inf, 1, np.inf]}
The imputation can be done for the selected numerical columns
>>> obj = NumericsImputer(strategy='mean', columns=['A'])
or for all the numerical columns
>>> obj = NumericsImputer(strategy='mean')
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> import numpy as np >>> X = dd.from_pandas(pd.DataFrame( ... {'A': [0.1, 0.2, np.nan], 'B': [1, 2, np.nan], 'C': ['z', 'a', 'a']}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> import numpy as np >>> X = ks.DataFrame( ... {'A': [0.1, 0.2, np.nan], 'B': [1, 2, np.nan], 'C': ['z', 'a', 'a']})
and pandas dataframes:
>>> import pandas as pd >>> import numpy as np >>> X = pd.DataFrame( ... {'A': [0.1, 0.2, np.nan], 'B': [1, 2, np.nan], 'C': ['z', 'a', 'a']})
The result is a transformed dataframe belonging to the same dataframe library.
imputation done for the selected columns:
>>> obj = NumericsImputer(strategy='mean', columns=['A']) >>> obj.fit_transform(X) A B C 0 0.10 1.0 z 1 0.20 2.0 a 2 0.15 NaN a
imputation done for all the columns:
>>> X = pd.DataFrame( ... {'A': [0.1, 0.2, np.nan], 'B': [1, 2, np.nan], 'C': ['z', 'a', 'a']}) >>> obj = NumericsImputer(strategy='mean') >>> obj.fit_transform(X) A B C 0 0.10 1.0 z 1 0.20 2.0 a 2 0.15 1.5 a
Independly of the dataframe library used to fit the transformer, the tranform_numpy method only accepts NumPy arrays and returns a transformed NumPy array. Note that this transformer should only be used when the number of rows is small e.g. in real-time environment.
>>> X = pd.DataFrame( ... {'A': [0.1, 0.2, np.nan], 'B': [1, 2, np.nan], 'C': ['z', 'a', 'a']}) >>> obj.transform_numpy(X.to_numpy()) array([[0.1, 1.0, 'z'], [0.2, 2.0, 'a'], [0.15000000000000002, 1.5, 'a']], dtype=object)
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.imputers.numerics_imputer.NumericsImputer[source]¶ Fit the transformer on the pandas/koalas dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Target values.
- Returns
- self‘NumericsImputer’
Instance of itself.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray[source]¶ Transform the NumPy array X.
- Parameters
- Xnp.ndarray:
Input array.
- Returns
- Xnp.ndarray:
Transformed array.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
compute_statistics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], value: Optional[Union[float, int, str]]) → Dict[str, Union[float, int, str]]¶ Compute the imputation values.
- Parameters
- XDataFrame
Dataframe. used to compute the imputation values.
- valueUnion[float, int, str, None]
Value used for imputation.
- Returns
- statisticsDict[str, Union[float, int, str]]
Imputation value mapping.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
-
transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- Returns
- XDataFrame
Transformed dataframe.