gators.data_cleaning.DropLowCardinality¶
- 
class 
gators.data_cleaning.DropLowCardinality(min_categories: int)[source]¶ Drop the categorical columns having a low cardinality.
- Parameters
 - min_categoriesint
 Min categories allowed.
Examples
Imports and initialization:
>>> from gators.data_cleaning import DropLowCardinality >>> obj = DropLowCardinality(min_categories=2)
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'd']}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'd']})
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'd']})
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X) A 0 a 1 b 2 c
>>> X = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'd']}) >>> _ = obj.fit(X) >>> obj.transform_numpy(X.to_numpy()) array([['a'], ['b'], ['c']], dtype=object)
- 
fit(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.data_cleaning.drop_low_cardinality.DropLowCardinality[source]¶ Fit the transformer on the dataframe X.
- Get the list of column names to remove and the array of
 indices to be kept.
- Parameters
 - XDataFrame
 Input dataframe.
- ySeries, default None.
 Target values.
- Returns
 - ——-
 - selfDropLowCardinality
 Instance of itself.
- 
static 
get_columns_to_drop(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], min_categories: float) → List[str][source]¶ Get the list of the column names to remove.
- Parameters
 - Xpd.DataFrame
 DataFrame.
- min_categoriesint
 Min categories allowed.
- Returns
 - List[str]
 List of the column names to drop.
- 
static 
check_array(X: numpy.ndarray)¶ Validate array.
- Parameters
 - Xnp.ndarray
 Array.
- 
check_array_is_numerics(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
 - Xnp.ndarray
 Array.
- 
static 
check_binary_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
 - ySeries
 Target values.
- 
static 
check_dataframe(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_contains_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_dataframe_is_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_dataframe_with_objects(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
 - XDataFrame
 Dataframe.
- 
check_datatype(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
 - XDataFrame
 Dataframe.
- 
static 
check_multiclass_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
check_nans(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
 - XDataFrame
 Dataframe.
- theta_vecList[float]
 List of columns.
- 
static 
check_regression_target(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
 - ySeries
 Target values.
- 
static 
check_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
 - XDataFrame
 Dataframe.
- ySeries
 Target values.
- 
fit_transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
 - XDataFrame.
 Input dataframe.
- ySeries, default None.
 Input target.
- Returns
 - XDataFrame
 Transformed dataframe.
- 
static 
get_column_names(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
 - inplacebool
 If True return columns. If False return columns__suffix.
- columnsList[str]
 List of columns.
- suffixstr
 Suffix used if inplace is False.
- Returns
 - List[str]
 List of column names.
- 
static 
get_idx_columns_to_keep(columns: List[str], columns_to_drop: List[str]) → numpy.array¶ Get the column indices to keep.
- Parameters
 - theta_vecList[float]
 List of columns of a dataset.
- columns_to_dropList[str]
 List of columns to drop.
- Returns
 - np.array:
 Column indices to keep.
- 
get_params(deep=True)¶ Get parameters for this estimator.
- Parameters
 - deepbool, default=True
 If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
 - paramsdict
 Parameter names mapped to their values.
- 
set_params(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
 - **paramsdict
 Estimator parameters.
- Returns
 - selfestimator instance
 Estimator instance.
- 
transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Transform the dataframe X.
- Parameters
 - XDataFrame
 Input dataset.
- Returns
 - XDataFrame
 Transformed dataset.
- 
transform_numpy(X: numpy.ndarray) → numpy.ndarray¶ Transform the array X.
- Parameters
 - Xnp.ndarray
 Input array.
- Returns
 - Xnp.ndarray
 Transformed array.