gators.binning.BinSingleTargetClassCategories¶
-
class
gators.binning.
BinSingleTargetClassCategories
[source]¶ Bin single target class categories.
Ensure that the target class ratio for each categy is between 0 and 1 excluded. Note that this transformer should only be used for binary classification problems.
Examples
Imports and initialization:
>>> from gators.binning import BinSingleTargetClassCategories >>> obj = BinSingleTargetClassCategories()
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({ ... "A": ["_0", "_1", "_2", '_2', '_1'], ... "B": ["_1", "_2", "_1", '_1', '_1'], ... "C": ["_0", "_0", "_1", '_2', '_2'], ... "D": ["_0", '_0', '_1', '_1', '_1'], ... "E": [1, 2, 3, 4, 5]}), npartitions=1) >>> y = dd.from_pandas(pd.Series([0, 1, 1, 0, 0], name='Target'), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({ ... "A": ["_0", "_1", "_2", '_2', '_1'], ... "B": ["_1", "_2", "_1", '_1', '_1'], ... "C": ["_0", "_0", "_1", '_2', '_2'], ... "D": ["_0", '_0', '_1', '_1', '_1'], ... "E": [1, 2, 3, 4, 5]}) >>> y = ks.Series([0, 1, 1, 0, 0], name='Target')
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({ ... "A": ["_0", "_1", "_2", '_2', '_1'], ... "B": ["_1", "_2", "_1", '_1', '_1'], ... "C": ["_0", "_0", "_1", '_2', '_2'], ... "D": ["_0", '_0', '_1', '_1', '_1'], ... "E": [1, 2, 3, 4, 5]}) >>> y = pd.Series([0, 1, 1, 0, 0], name='Target')
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X, y) A B C D E 0 _0|_1 _1|_2 _0|_1|_2 _0 1 1 _0|_1 _1|_2 _0|_1|_2 _0 2 2 _2 _1|_2 _0|_1|_2 _1 3 3 _2 _1|_2 _0|_1|_2 _1 4 4 _0|_1 _1|_2 _0|_1|_2 _1 5
Independly of the dataframe library used to fit the transformer, the tranform_numpy method only accepts NumPy arrays and returns a transformed NumPy array. Note that this transformer should only be used when the number of rows is small e.g. in real-time environment.
>>> obj.transform_numpy(X.to_numpy()) array([['_0|_1', '_1|_2', '_0|_1|_2', '_0', 1], ['_0|_1', '_1|_2', '_0|_1|_2', '_0', 2], ['_2', '_1|_2', '_0|_1|_2', '_1', 3], ['_2', '_1|_2', '_0|_1|_2', '_1', 4], ['_0|_1', '_1|_2', '_0|_1|_2', '_1', 5]], dtype=object)
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series]) → gators.binning.bin_single_target_class_categories.BinSingleTargetClassCategories[source]¶ Fit the transformer on the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries.
Target values.
- Returns
- BinSingleTargetClassCategories
Instance of itself.
-
transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame][source]¶ Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- Returns
- XDataFrame
Transformed dataframe.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray[source]¶ Transform the array X.
- Parameters
- Xnp.ndarray
Array.
- Returns
- Xnp.ndarray
Transformed array.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.