gators.feature_selection.InformationValue¶
-
class
gators.feature_selection.
InformationValue
(k: int, regularization: float = 0.1, max_iv: float = 10.0)[source]¶ Feature selection based on the information value.
InformationValue accepts only binary variable targets.
- Parameters
- kint
Number of features to keep.
- regularizationfloat, default 0.5.
Insure that the weights of evidence are finite.
- max_ivint, default 10.
Drop columns with an information larger than max_iv.
Examples
Imports and initialization:
>>> from gators.feature_selection import InformationValue >>> from gators.binning import Binning >>> obj = InformationValue(k=3)
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({ ... "A": ['a', 'b', 'a', 'b', 'c', 'b'], ... "B": ['true', 'true', 'false', 'true', 'false', 'false'], ... "D": ['a', 'b', 'c', 'd', 'e', 'f'], ... "F": ['e', 'f', 'g', 'e', 'f', 'g']}), npartitions=1) >>> y = dd.from_pandas(pd.Series([1, 1, 1, 0, 0, 0], name='TARGET'), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({ ... "A": ['a', 'b', 'a', 'b', 'c', 'b'], ... "B": ['true', 'true', 'false', 'true', 'false', 'false'], ... "D": ['a', 'b', 'c', 'd', 'e', 'f'], ... "F": ['e', 'f', 'g', 'e', 'f', 'g']}) >>> y = ks.Series([1, 1, 1, 0, 0, 0], name='TARGET')
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({ ... "A": ['a', 'b', 'a', 'b', 'c', 'b'], ... "B": ['true', 'true', 'false', 'true', 'false', 'false'], ... "D": ['a', 'b', 'c', 'd', 'e', 'f'], ... "F": ['e', 'f', 'g', 'e', 'f', 'g']}) >>> y = pd.Series([1, 1, 1, 0, 0, 0], name='TARGET')
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X, y) A B F 0 a true e 1 b true f 2 a false g 3 b true e 4 c false f 5 b false g
>>> X = pd.DataFrame({ ... "A": ['a', 'b', 'a', 'b', 'c', 'b'], ... "B": ['true', 'true', 'false', 'true', 'false', 'false'], ... "D": ['a', 'b', 'c', 'd', 'e', 'f'], ... "F": ['e', 'f', 'g', 'e', 'f', 'g']}) >>> _ = obj.fit(X, y) >>> obj.transform_numpy(X.to_numpy()) array([['a', 'true', 'e'], ['b', 'true', 'f'], ['a', 'false', 'g'], ['b', 'true', 'e'], ['c', 'false', 'f'], ['b', 'false', 'g']], dtype=object)
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series]) → gators.feature_selection.information_value.InformationValue[source]¶ Fit the transformer on the dataframe X.
- Parameters
- X: DataFrame
Input dataframe.
- y: Series
Target values.
- self“InformationValue”
Instance of itself.
-
static
compute_information_value
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series], regularization: float) → pandas.core.series.Series[source]¶ Compute information value.
- Parameters
- X: DataFrame
Input dataframe.
- y: np.ndarray
Target values.
- Returns
- pd.Series
Information value.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
-
transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ynp.ndarray
Target values.
- Returns
- XDataFrame
Transformed dataframe.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray¶ Transform the array X.
- Parameters
- Xnp.ndarray
Input array.
- Returns
- Xnp.ndarray
Transformed array.