gators.feature_selection.InformationValue

class gators.feature_selection.InformationValue(k: int, regularization: float = 0.1, max_iv: float = 10.0)[source]

Feature selection based on the information value.

InformationValue accepts only binary variable targets.

Parameters
kint

Number of features to keep.

regularizationfloat, default 0.5.

Insure that the weights of evidence are finite.

max_ivint, default 10.

Drop columns with an information larger than max_iv.

Examples

Imports and initialization:

>>> from gators.feature_selection import InformationValue
>>> from gators.binning import Binning
>>> obj = InformationValue(k=3)

The fit, transform, and fit_transform methods accept:

  • dask dataframes:

>>> import dask.dataframe as dd
>>> import pandas as pd
>>> X = dd.from_pandas(pd.DataFrame({
... "A": ['a', 'b', 'a', 'b', 'c', 'b'],
... "B": ['true', 'true', 'false', 'true', 'false', 'false'],
... "D": ['a', 'b', 'c', 'd', 'e', 'f'],
... "F": ['e', 'f', 'g', 'e', 'f', 'g']}), npartitions=1)
>>> y = dd.from_pandas(pd.Series([1, 1, 1, 0, 0, 0], name='TARGET'), npartitions=1)
  • koalas dataframes:

>>> import databricks.koalas as ks
>>> X = ks.DataFrame({
... "A": ['a', 'b', 'a', 'b', 'c', 'b'],
... "B": ['true', 'true', 'false', 'true', 'false', 'false'],
... "D": ['a', 'b', 'c', 'd', 'e', 'f'],
... "F": ['e', 'f', 'g', 'e', 'f', 'g']})
>>> y = ks.Series([1, 1, 1, 0, 0, 0], name='TARGET')
  • and pandas dataframes:

>>> import pandas as pd
>>> X = pd.DataFrame({
... "A": ['a', 'b', 'a', 'b', 'c', 'b'],
... "B": ['true', 'true', 'false', 'true', 'false', 'false'],
... "D": ['a', 'b', 'c', 'd', 'e', 'f'],
... "F": ['e', 'f', 'g', 'e', 'f', 'g']})
>>> y = pd.Series([1, 1, 1, 0, 0, 0], name='TARGET')

The result is a transformed dataframe belonging to the same dataframe library.

>>> obj.fit_transform(X, y)
   A      B  F
0  a   true  e
1  b   true  f
2  a  false  g
3  b   true  e
4  c  false  f
5  b  false  g
>>> X = pd.DataFrame({
... "A": ['a', 'b', 'a', 'b', 'c', 'b'],
... "B": ['true', 'true', 'false', 'true', 'false', 'false'],
... "D": ['a', 'b', 'c', 'd', 'e', 'f'],
... "F": ['e', 'f', 'g', 'e', 'f', 'g']})
>>> _ = obj.fit(X, y)
>>> obj.transform_numpy(X.to_numpy())
array([['a', 'true', 'e'],
       ['b', 'true', 'f'],
       ['a', 'false', 'g'],
       ['b', 'true', 'e'],
       ['c', 'false', 'f'],
       ['b', 'false', 'g']], dtype=object)
fit(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series]) → gators.feature_selection.information_value.InformationValue[source]

Fit the transformer on the dataframe X.

Parameters
X: DataFrame

Input dataframe.

y: Series

Target values.

self“InformationValue”

Instance of itself.

static compute_information_value(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series], regularization: float) → pandas.core.series.Series[source]

Compute information value.

Parameters
X: DataFrame

Input dataframe.

y: np.ndarray

Target values.

Returns
pd.Series

Information value.

static check_array(X: numpy.ndarray)

Validate array.

Parameters
Xnp.ndarray

Array.

check_array_is_numerics(X: numpy.ndarray)

Check if array is only numerics.

Parameters
Xnp.ndarray

Array.

static check_binary_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])

Raise an error if the target is not binary.

Parameters
ySeries

Target values.

static check_dataframe(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Validate dataframe.

Parameters
XDataFrame

Dataframe.

static check_dataframe_contains_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Check if dataframe is only numerics.

Parameters
XDataFrame

Dataframe.

static check_dataframe_is_numerics(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Check if dataframe is only numerics.

Parameters
XDataFrame

Dataframe.

check_dataframe_with_objects(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])

Check if dataframe contains object columns.

Parameters
XDataFrame

Dataframe.

check_datatype(dtype, accepted_dtypes)

Check if dataframe is only numerics.

Parameters
XDataFrame

Dataframe.

static check_multiclass_target(y: Union[pd.Series, ks.Series, dd.Series])

Raise an error if the target is not discrete.

Parameters
ySeries

Target values.

check_nans(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])

Raise an error if X contains NaN values.

Parameters
XDataFrame

Dataframe.

theta_vecList[float]

List of columns.

static check_regression_target(y: Union[pd.Series, ks.Series, dd.Series])

Raise an error if the target is not discrete.

Parameters
ySeries

Target values.

static check_target(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])

Validate target.

Parameters
XDataFrame

Dataframe.

ySeries

Target values.

fit_transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]

Fit and Transform the dataframe X.

Parameters
XDataFrame.

Input dataframe.

ySeries, default None.

Input target.

Returns
XDataFrame

Transformed dataframe.

static get_column_names(inplace: bool, columns: List[str], suffix: str)

Return the names of the modified columns.

Parameters
inplacebool

If True return columns. If False return columns__suffix.

columnsList[str]

List of columns.

suffixstr

Suffix used if inplace is False.

Returns
List[str]

List of column names.

get_params(deep=True)

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.

transform(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]

Transform the dataframe X.

Parameters
XDataFrame.

Input dataframe.

ynp.ndarray

Target values.

Returns
XDataFrame

Transformed dataframe.

transform_numpy(X: numpy.ndarray) → numpy.ndarray

Transform the array X.

Parameters
Xnp.ndarray

Input array.

Returns
Xnp.ndarray

Transformed array.