gators.model_building.XGBBoosterBuilder

class gators.model_building.XGBBoosterBuilder[source]

XGBoost Booster Converter Class.

Examples

>>> import numpy as np
>>> import xgboost as xgb
>>> from gators.model_building import XGBBoosterBuilder
>>> X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
>>> y_train = np.array([0, 1, 1, 0])
>>> model = xgb.XGBClassifier(eval_metric='logloss').fit(X_train, y_train)
>>> xgbooster = XGBBoosterBuilder.train(
... model=model,
... X_train=X_train,
... y_train=y_train)
>>> xgbooster.predict(xgb.DMatrix(X_train))
array([0.5, 0.5, 0.5, 0.5], dtype=float32)
static train(model: Union[xgboost.sklearn.XGBClassifier, xgboost.sklearn.XGBRegressor, xgboost.sklearn.XGBRFClassifier, xgboost.sklearn.XGBRFRegressor], X_train: numpy.ndarray, y_train: numpy.ndarray, num_class=None)[source]

Convert the XGBoost model to a XGB Booster model.

Parameters
modelUnion[XGBClassifier, XGBRegressor, XGBRFClassifier, XGBRFRegressor]

Trained xgboost.sklearn model.

X_trainnp.ndarray

Train array.

y_trainnp.ndarray

Target values.

Returns
xgboost.Booster

Trained xgboost Booster model.