gators.data_cleaning.DropHighCardinality¶
-
class
gators.data_cleaning.
DropHighCardinality
(max_categories: int)[source]¶ Drop the categorical columns having a large cardinality.
- Parameters
- max_categoriesint
Maximum number of categories allowed.
Examples
Imports and initialization:
>>> from gators.data_cleaning import DropHighCardinality >>> obj = DropHighCardinality(max_categories=2)
The fit, transform, and fit_transform methods accept:
dask dataframes:
>>> import dask.dataframe as dd >>> import pandas as pd >>> X = dd.from_pandas(pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'e']}), npartitions=1)
koalas dataframes:
>>> import databricks.koalas as ks >>> X = ks.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'e']})
and pandas dataframes:
>>> import pandas as pd >>> X = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'e']})
The result is a transformed dataframe belonging to the same dataframe library.
>>> obj.fit_transform(X) B 0 d 1 d 2 e
>>> X = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['d', 'd', 'e']}) >>> _ = obj.fit(X) >>> obj.transform_numpy(X.to_numpy()) array([['d'], ['d'], ['e']], dtype=object)
-
fit
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → gators.data_cleaning.drop_high_cardinality.DropHighCardinality[source]¶ Fit the transformer on the dataframe X.
- Get the list of column names to remove and the array of
indices to be kept.
- Parameters
- XDataFrame
Input dataframe.
- ySeries, default None.
Target values.
- Returns
- selfDropHighCardinality
Instance of itself.
-
static
get_columns_to_drop
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], max_categories: int) → List[str][source]¶ Get the names of the columns to drop.
- Parameters
- Xpd.DataFrame
Dataframe.
- max_categoriesint
Maximum number of categories allowed.
- Returns
- List[str]
List of the column names to drop.
-
static
check_array
(X: numpy.ndarray)¶ Validate array.
- Parameters
- Xnp.ndarray
Array.
-
check_array_is_numerics
(X: numpy.ndarray)¶ Check if array is only numerics.
- Parameters
- Xnp.ndarray
Array.
-
static
check_binary_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not binary.
- Parameters
- ySeries
Target values.
-
static
check_dataframe
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Validate dataframe.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_contains_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_dataframe_is_numerics
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
check_dataframe_with_objects
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame])¶ Check if dataframe contains object columns.
- Parameters
- XDataFrame
Dataframe.
-
check_datatype
(dtype, accepted_dtypes)¶ Check if dataframe is only numerics.
- Parameters
- XDataFrame
Dataframe.
-
static
check_multiclass_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
check_nans
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], columns: List[str])¶ Raise an error if X contains NaN values.
- Parameters
- XDataFrame
Dataframe.
- theta_vecList[float]
List of columns.
-
static
check_regression_target
(y: Union[pd.Series, ks.Series, dd.Series])¶ Raise an error if the target is not discrete.
- Parameters
- ySeries
Target values.
-
static
check_target
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series])¶ Validate target.
- Parameters
- XDataFrame
Dataframe.
- ySeries
Target values.
-
fit_transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame], y: Union[pd.Series, ks.Series, dd.Series] = None) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Fit and Transform the dataframe X.
- Parameters
- XDataFrame.
Input dataframe.
- ySeries, default None.
Input target.
- Returns
- XDataFrame
Transformed dataframe.
-
static
get_column_names
(inplace: bool, columns: List[str], suffix: str)¶ Return the names of the modified columns.
- Parameters
- inplacebool
If True return columns. If False return columns__suffix.
- columnsList[str]
List of columns.
- suffixstr
Suffix used if inplace is False.
- Returns
- List[str]
List of column names.
-
static
get_idx_columns_to_keep
(columns: List[str], columns_to_drop: List[str]) → numpy.array¶ Get the column indices to keep.
- Parameters
- theta_vecList[float]
List of columns of a dataset.
- columns_to_dropList[str]
List of columns to drop.
- Returns
- np.array:
Column indices to keep.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
-
transform
(X: Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]) → Union[pd.DataFrame, ks.DataFrame, dd.DataFrame]¶ Transform the dataframe X.
- Parameters
- XDataFrame
Input dataset.
- Returns
- XDataFrame
Transformed dataset.
-
transform_numpy
(X: numpy.ndarray) → numpy.ndarray¶ Transform the array X.
- Parameters
- Xnp.ndarray
Input array.
- Returns
- Xnp.ndarray
Transformed array.